
) Pergamon 

www.elsevier.cem/iocat e~ppmat breech 

J. AppL Matttt Meck¢, Vol. 63, No. 2, pp. 229-235, 1999 
© 1999 Elsevier Science Ltd 

All rights tesetved,!Printed in Gzeat Britain 
PII: S0021-8928(99)00031-3 0021--8928/99/$--se.e front matteg 

THE FROZEN-IN CONDITION FOR A DIRECTION 
FIELD, SMALL DENOMINATORS AND CHAOTIZATION 

OF STEADY FLOWS OF A VISCOUS FLUID? 

V. V. K O Z L O V  

Moscow 

(Received 24 March 1998) 

A clamical theorem of Heimhoitz states that vortex lines are frozen into a flow of barotropic ideal fluid in a potential force 
field. This result leads to the following general problem: it is required to find conditions under which a given dynamical 
system admils of  a direction field frozen into its phase flow. By the rectification theorem for trajectories, a whole family of frozen 
direction fields always exLsts locally. It turns out that the problem of the existence of non-trivial fi'cgen direction fields 
defined in the whole phase space is closely related to the well-known problem of small denominators. Results of a general 
nature are applied to Hamiitonian systems, and also to steady flows of a viscous fluid. © 1999 Elsevier Science Ltd. All rights 
reserved. 

1. F R O Z E N - I N  C O N D I T I O N  FOR A D I R E C T I O N  F I E L D  

Let M be a smooth manifold, let v be a vector field on M generating a dynamical system 

=v(x), x~ M (1.1) 

and let gt be the phase flow of the systems. 
Let a # 0 be another smooth vector field on M. Through every point x ~ M there passes a unique 

integral curve of a (at each point x of  this curve it is tangent to the vector a(x)). We shall say that the 
family of integral curves is frozen into the flow of system (1.1) if it is mapped into itself under all 
transformations gt. 

A criterion for the integral curves of a field a to be frozen is the truth of the equality 

[a, v] = La (1.2) 
where [,  ] is the commutator of  the vector fields and k is some smooth function on M. In order to prove 
(1.2), we use the rectification theorem for integral curves of a: in suitable local coordinates xz . . . .  , Xn, 
the components of  a have the form 1, 0 , . . . ,  0. Condition (1.2) is equivalent to the series of  equalities 

avl lax I =~,, au2/ax t = . . .=au,  lax! =0 (1.3) 

where 1)/are the components of the field v. Since the integral curves of the field a are described in these 
coordinates by the equations Xk = const, k t> 2, while the components a)k, k I> 2, are independent of 
Xl, it follows that this family of curves is mapped into itself under the transformationsgt, and conversely, 
if conditions (1.3) fail to hold, then certain of the components ½ . . . .  , a~ n of v take different values for 
different values of  the coordinate xz and therefore the phase flow gt will twist the coordinate curves 
x k = const, k ~> 2. 

Condition (1.3) for n = 3 was first established by Poincar6, Zhoravskii and Fridman (see [1, 2]) as 
an extension of Helmholtz's theorem according to which the vortex lines (integral curves of the field 
of  the curl) are frozen into a flow of an ideal barotropic fluid in a potential force field. In the non- 
autonomous case, the integral curves of the field a(x, t) are considered at fixed times t, and condition 
(1.2) is replaced by the more general condition 

aa/Ot + [a, v] = Xa (1.4) 

Obviously, Eq. (1.2) does not change its form if the field a is replaced by pa, where la is any smooth 
function ofx. Consequently, it does not depend on the magnitude of the vectors a(x). Thus, Eq. (1.2) 
may be considered as a condition for a direction f ield to be frozen into the phase flow of the field v. 
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A derivation of the frozen-in condition (1.4) for the integral curves of a vector field a(x, t) may also 
be found in the classical textbook [3]. 

If  3. = 0, a will be a field of symmetries for system (1.1). In the general case, condition (1.2) may be 
given the following group-theoretic interpretation: the phase flow of the dynamical system (1.1) maps 
phase trajectories (but not solutions) of the dynamical system 

dx/dcx = a(x), ¢z ~ R 

into trajectories of the same system [4]. Note that, unlike the problem of fields of symmetries, the 
determination of frozen direction fields is a non-linear problem: apart from the field a, the factor ~. in 
(1.2) is also an unknown quantity. 

The problem of whether frozen direction fields exist for a given system of differential equations was apparently 
first considered by Fridman [2, Section 10]. Fridman's method is actually based on expanding the solutions in series 
of powers of the time. Hence the results established in [2] are local in nature (both with respect to the space variables 
x and with respect to the time t). Moreover, for autonomous systems of type (1.1), Fridman's local series yield field 
a that depend explicitly on time. At the same.time, the ¢ectificatign theorem for trajectories of system (1.1) may 
be used to obtain families of non-trivial vector fields a that do not depend on t and satisfy (1.2). Moreover, these 
local results have very little value for dynamics. From the contemporary point of view, which goes back to Poincar6 
[5], it is useful to consider objects (such as first integrals, fields of symmetries, etc.) which are uniquely defined in 
the whole phase space M or in a part of it where the trajectories of system (1.1) have the recurrence property. 

2. S M A L L  D E N O M I N A T O R S  

Consider the following system of differential equations 

.~ = Uo + e..ul + .... ~,=Uo +E:o] + .... ~.= ~w~ +. . .  (2.1) 

where the right-hand sides are series in powers of e whose coefficients are analytic functions of x, y, z, 
2n-periodic in x and y. It is assumed that u0 and u0 are functions o f z  only. It may be assumed that the 
phase space M of system (2.1) is a direct product A x T 2, where A is the interval in which the variable 
z varies and T 2 = {x, y mod 2n} is a two-dimensional toms. 

If e = 0, we have a completely integrable system. The z coordinate is a first integral, whose level 
surfaces are two-dimensional surfaces carrying conditionally-periodic trajectories with two frequencies 
u0 and l)0. 

Systems of type (2.1) are one of the key objects of non-linear oscillation theory [6]. In particular, Hamiltonian 
systems with two degrees of freedom which are perturbations of integrable systems are reducible to this form (after 
iso-energetic reduction). Poincar6 termed the study of systems of this type the fundamental problem of dynamics 
[5, Section 13]. 

Let  us consider the problem of whether  a vector field 

a = ao  + rat1 + . . .  ( 2 . 2 )  

exists for system (2.1) satisfying condition (1.2), and moreover such that the vector fields a0, al . . . .  are 
single-valued and analytic A x TL Of  course, the function 3. must also be sought as a power series 
+ e~.l + • • • with single-valued analytic coefficients. 

Let  us assume that u0 ¢ 0. We will call the unperturbed non-degenerate if the frequency ratio u0/u0 
is a non-constant function on A. An equivalent condition is: u'0u0 - u0u'0 ~ 0 (where the prime denotes 
differentiation with respect to z). 

We expand the function wa in a Fourier series 

w t = ~ Wmn(z)exp[i(mx+ny)] 

We now introduce the Poincar6 set P, defined as the set of all points z ~ A such that 

1) muo(z) + noo(Z) = 0, m 2 + n 2 ~ 0 

2) w,.,,Cz) ~ o 

The points of the Poincar6 set correspond to resonant tori of the unperturbed problem which are 
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destroyed when a perturbation is added. In the typical situation, the set P is everywhere dense in the 
interval A, a fact closely related to the problem of small denominators, which plays an important role 
in the investigation of system (2.1) [7]. 

A frozen direction field is said to be trivial if a = lxv. In that case the phase trajectories of system 
(1.1) turn out to be frozen. In the problem under consideration, the fields v and a depend on the 
parameter e; we will assume that the direction field satisfies the non-triviality condition at e = 0: 
a0 * v0. In accordance with Section 1, we will also assume that a0* 0. Otherwise, some of the integral 
curves of the field a0 will lose the regularity property and degenerate into points. 

The main result of this paper is the following. 

Theorem 1. Suppose the unperturbed system is non-degenerate and that the Poincar6 set has at least 
one limit point in the interior of A. Then Eqs (2.1) do not admit of non-trivial frozen direction fields 
which are analytic in e. 

It has been proved [8] that, under the assumptions of Theorem 1, system (2.1) does not admit of 
non-constant integrals and non-trivial fields of symmetries which are series in powers of e with analytic 
coefficients. If one requires in addition that Woo(Z) ~ O, then system (2.1) does not admit of non-trivial 
linear integral variants ~q~, where the 1-form q~e is analytic in e and dq~ ~ 0 [9]. The coefficient Woo is 
obviously equal to the mean value of the function wl over the two-dimensional torus T 2. It has been 
proved [10] that the condition Woo ~ 0 is essential: it does not hold for Hamiltonian systems, and such 
systems admit of a non-trivial Poincar6--Cartan integral variant. One possible interpretation of the non- 
existence of integral invariants of system (2.1) is that there is no analogue of Thomson's theorem on 
the conservation of circulation in an ideal liquid around a closed contour frozen into the flow. 

We now prove Theorem 1. According to (2.1), the field v may be expanded in a series v0 + Evl + . . . .  
where the components of the field v0 are Po, u0, 0. Let a have the form (2.2); denote the components 
of a0 by a0, b0 and Co. Setting e = 0 in (1.2), we obtain three equations 

Co~U o / ~z - uo~ao / ax -V o ~ao 1 ~y = ~.oao 

CoO° o I ~z - uo~b o / ~x - u  o ab o I ~y = ~,obo (2.3) 

-UoSC o ! ~x -V o~C o l ~y = ~,oCo 

Fix a value of z = z0 ~ A. The last equation of system (2.3) may be rewritten in the form 

Co = -  2toCo (2.4) 

where the dot denotes the total derivative of the function Co: I- 2 ~ R along trajectories of the system 
on the torus 

J: = uo(zo), y - ~zo)  (2.5) 

Let us assume that the torus z = Zo is non-resonant. If the function Co vanishes at some point (Xo, Yo) 
T z, then (since Eq. (2.4) is linear) it vanishes on the whole trajectory of system (2.5) passing through 
the point x = Xo, y = Yo. By assumption, at z = z0 the frequency ratio Uo/U0 is irrational. Consequently, 
all the trajectories of system (2.5) are everywhere dense on the torus and by continuity Co ~- 0. 

Let us assume now that Co * 0 at z = z0. Setting v = ao/co, we deduce from the first and third equations 
of system (2.3) that 

UoOV l ~x +u o~V l ~y = ~uo l aZ 

or, which is the same thing, that ~ = OUo/~Z. Since the right-hand side of this equality is independent 
o fx  and y, it follows that 

(v( t ) -  v(0))/t = ~ud0z 

Letting t ~ oo and using the fact that v is bounded, we see that ~Uo/~Z = 0 at z = z0. An analogous 
argument holds for the derivative 0v0/~z also. 

Thus, the relation (u~ ~02- u0~)c0 = 0 holds on a non-resonant subset of A. By continuity, this relation 
holds everywhere on A x T'.  As there are no divisors of zero in the ring of analytic functions, one factor 
must vanish identically. Since we have assumed non-degeneracy, it follows that Co --- 0. 

When Co -- 0 the first two equations of (2.3) have the same form as the third equation. Consequently, 
the functions a0 and b0 either vanish identically on non-resonant tori or, on the contrary, have no zeros 
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at all there .  Suppose ,  say, that  a0 # 0. T h e n  the quot ient  × = bo/ao satisfies the equa t ion  

UoOXl 3x +u oOxl ay = O 

Consequent ly ,  bo/ao = const  on non- re sonan t  tori. 
By assumpt ion ,  a 2 + bo 2 # 0. We may  the re fo re  set ao = r~, bo = rrl, where  

n=bo/," 
with r, ~ and tl analytic functions on A × -0 -2. Since ~ and 11 in fact depend on the quotient bo/ao, they 
are constant on non-resonant tori. Since the non-resonant tori are everywhere dense, it follows that 
and ~1 are analytic functions of z only. 

Let al, bl and cl be the components of the vector field al. Equating the coefficients of ~ in (1.2) to 
zero, we obtain three equations; one of these is the equation for the z coordinate 

aoOw t I ~x + bo3w , I ~y - Uoa q I ~x - u  o~Cl (2.6) 

Since r #  0, we may  assume that  cl = or, where  a is some  analytic funct ion on A × T 2. I t  follows f rom 
(2.3) tha t  r satisfies the equa t ion  

-uo3r  l 3x -U ol)r l Oy = ~,o r (2.7) 

Set t ing a0 = r~, b0 -- rrl and using (2.7), we can reduce  Eq. (2.6) to the following fo rm 

~3w t I ~x + rli)w I l i ly - Uoi)o l ~x -U oOO l Oy = 0 

This l inear equa t ion  is solved by Fourier ' s  method.  Equat ing  the coefficients of  like harmonics ,  we obtain 
an infinite chain  of  s imple algebraic equat ions  

(m~ + n ~ ) W  m = (mu o + nuo)Y. ~ ( 2 . 8 )  

where  Xm,(Z) are the Four ier  coefficients of  a.  
Now let z E P.  T h e n  muo + n~0 = 0, and it follows f rom (2.8) that  m~ + nrl = 0. Since m 2 + n 2 # 0, 

the d e t e r m i n a n t  o f  this l inear  system, f = U0rl - u0~, vanishes.  T h e  funct ion f is analytic on A and its 
zeros have a limit poin t  in the inter ior  o f  A. Consequent ly ,  f - 0. Thus,  when  E = 0 the vectors  v and 
a are l inearly d e p e n d e n t  at all points  o f  the  phase  space.  This  comple tes  the p r o o f  of  the theorem.  

Le t  the s e t M  be compac t  and assume that  system (1.1) is ergodic.  T h e n  t ra jector ies  exist that  fill out  
M everywhere  densely; in particular,  such systems do not  admit  of  non-cons tant  first integrals. However ,  
the ergodic  p rope r ty  does  not  contradic t  the existence of  non-trivial  fields of  symmetr ies .  

Here is a simple example: let M be the n-dimensional torus {xi mod 2n} and let the system be given by equations 

.tl = tot . . . . .  .t n = co,, (2 .9 )  

with constant incommensurable frequencies to. It is clear that any vector field with constant components is a field 
of symmetries. The ergodic system (2.9) is degenerate in a certain sense: its entropy is zero. An example of the 
opposite property is provided by Anosov systems [11] with unstable behavior of the phase trajectories. In particular, 
all periodic trajectories are hyperbolic and the set of all such trajectories is everywhere dense in the whole phase 
space. 

It has been shown [8] that Anosov systems do not admit of non-trivial fields of symmetries. They may, however, 
have non-trivial frozen direction fields. 

Here is a simple example (cf. [12, Section 14]). Consider the three-dimensional manifold M obtained from the 
direct product of the torus 1 "2 = (Xl,X2 mod 2n} and the interval 0 ~< x3 ~< I by gluing the end tori together according 
to the following rule: a point (xl, x2, 1) is identified with the point (X'l, x~, 0), where 

x~ = 2xl +x  2, x~ =xl  +x2 (mod2n) (2.10) 

Consider the vector field v on 1-2 × {0, 1) with components 0, 0, 1. After gluing, this field is converted into a 
smooth field on M which defines an Anosov system. Define a = (al, a2, 0), where (al, a2) is an eigenvector of the 
linear mapping (2.10) (there are in fact two linearly independent eigenvectors). Clearly, the field a generates a 
non-trivial direction field which is frozen in to the flow of v. It should be noted that the integral curves of a fill out 
the two-dimensional tori x3 = const everywhere densely. 
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3. SOME A P P L I C A T I O N S  

Fridman ([2, Section 9]) found conditions under which the vortex lines of a field v are frozen into 
the flow gt, as well as conditions for the conservation of the circulation of v around any closed contour. 
In that case, M is an ordinary Euclidean three-dimensional space. Fridman's conditions are local in 
nature. He presented examples of fields for which the circulation remains unchanged but the vortex 
lines are not frozen [2]. 

We will now present a contrasting example, relating to the dynamics of a homogeneous incompressible fluid in a 
potential field of external forces, taking into account viscous friction in Rayleigh's form. The equations of motion are 

~v l ~t + (rot v) × v = -~ f  l ~x - kv (3.1) 

where f is the Bernoulli trinomial and k is the coefficient of viscous friction. Applying the curl operator to both 
sides of (3.1) and using formulae of vector analysis, as well as the incompressibility of the fluid (div v = 0), we 
obtain the equality 

t)a/at + [a, v] =-ka, a = rot v 

Consequently, by (1.4), the field lines of the curl of the velocity are frozen into the flow. 
Now let y be a closed contour, we define 

1(0= J (v,dx) 
gry 

Equations (3.1) imply a relation according to which the circulation varies exponentially: l(t) = I(0) exp(-k O. 

Fridman's problem may be generalized, comparing the conditions for existence in the large of frozen 
direction fields and integral invariants of dynamical systems on three-dimensional manifolds. To that 
end, consider the Hamiltonian system 

.~= !, ~ = ~ H  I ~z, ~ = - a H  l ~y; H = Ho(z )+gl t l ( x , y , z )+ . . .  (3.2) 

Here y mod 21t, z are action-angle variables for the unperturbed system, and the function H is assumed 
to be 2rt-periodic in the " t ime"x  = t. Systems of type (3.2) are obtained from autonomous systems with 
two degrees of freedom after reducing the order in Whittaker's sense. 

For system (3.2) 

u0 = 1, u 0 = ~H0 / ~z, wl = - ~ H i  / ~Y 

Consequently, the condition for the unperturbed system to be non-degenerate is equivalent to the 
inequality d2Ho/dz 2 ~ 0, and the Poincar6 set P is 

{ z e A : d H o l d z = - n l m ,  H m 40} 

where H,,~ are the Fourier coefficients of the perturbing function H~. In a typical situation, P is every- 
where dense in A. Consequently, by Theorem 1, Eq. (3.2) has no non-trivial frozen direction fields. But 
it always has a Poincar~-Cartan invariant 

zay- 

Let us generalize this situation slightly. Let M be a three-dimensional manifold and suppose that 
system (1.1) admits of a non-trivial integral invariant on M 

~q~ (3.3) 

where cp is a 1-form, dq~ ~ O. The invariance condition (3.3) becomes 

L,q~ = dg (3.4) 

where Lv is the Lie derivative and g is a scalar function on M. By the homotopy formula 

L, =di,, +ivd 

(i, is the inner product of the field v and a differential form). Consequently, the relationship (3.4) becomes 
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Ivt~=dh; ~ = d f p ,  h = g - c p ( v )  

Since • • 0 and the set M is three-dimensional, it follows that at every point there is a non-zero tangent 
vector a(x) such that i,O = 0. This vector is defined uniquely apart from a constant factor. It can be 
shown that the integral curves of a are frozen into the flow of system (1.1). Of course, it may turn out 
that h = const. Then the field a is collinear with the field v and the frozen direction field will be trivial. 
This is precisely the situation in the case of Hamiltonian systems. However, if h is not an integral of 
the field a, this field will generate a non-trivial frozen direction field. 

4. C H A O T I Z A T I O N  OF STEADY F L O W S  OF A VI SCOUS F L U I D  

Consider the steady flow of a viscous incompressible fluid in the Stokes approximation [13]. To simplify 
matters, let us assume that there are no external forces. The equations of motion take the form 

~ p l ~ x = ~ v ,  divv = 0  (4.1) 

wherep is the pressure and ~t is the coefficient of dynamic viscosity, which we shall assume is equal to 
one (for example, by making the substitution p --> p/~t). 

We will seek solutions of system (4.1) in the form 

U=Uo +~U I, v =Vo +~V I, w=e .w I, p =  po +epl (4.2) 

where e is a parameter, and the functions u0, u0 and P0 depend only on z. Solutions of this type with 
e = 0 are important in meteorology [2]. It is assumed that the functions ul, ~1, wl andpl  are 2x-periodic 
inx andy.  

Substituting (4.2) into (4.1), we obtain the relations 

Uo = Otz + ~, V o = ~Z + T1, P0=const  

The coefficients c~, 13, ~, 11 are constant; we will assume that 

txn - I]~ * 0 (4.3) 

Let Umn, Vmn, W,n~, Pm~ be the Fourier coefficients of the functions u], ~1, wl, Pl.  They depend on z 
and are found from the following linear system 

U mn = ( m 2 +n2)Umn + imPmn , Vmn = ( m 2 + n 2 ) Vmn + inPmn 

I~mn = - ( m  2 + n 2 )W m - i ( m U ~  + nV~n) (4.4) 

Win, , = - i (mUmn + nV, nn) 

(the prime denotes differentiation with respect to z). Equations (4.4) may be regarded as a linear system 
of ordinary second-order differential equations, of second order in U and V and first order in P and 
W. They have solutions in every interval A on the {z} axis which take given values at a fixed point of A 
(as do the derivatives U', II). Since the linear system (4.4) is closed at fixed values of m, n, the construction 
of convergent Fourier series presents no difficulties. 

Thus, the field of velocities (4.2) has the form (2.1). Resonant tori muo + n~o = 0 correspond to 
points 

Zmn = - (m~ + n'q)l(mot + nil) 

By (4.3), they are everywhere dense on the {z} axis. For typical flows, the value of Wren at the points 
Zmn do not vanish. In the general case, therefore the Poincar6 set is dense on the real line R = {z}. 
Condition (4.3) is' also the condition for the unperturbed system to be non-degenerate. Thus, by 
Theorem 1, a typical steady flow (4.2) has no non-trivial frozen direction fields. 

Since the fluid is incompressible, the density is a first integral. By a well-known result [8], a typical field 
(4.2) does not admit of non-constant first integrals. In this case, therefore, a viscous fluid is necessarily 
homogeneous. 

Remark. Solutions of the full Navier-Stokes equations may also be found as formal series in powers of e, but 
one then has the non-trivial task of proving that they are convergent [9]. 
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5. C O N C L U D I N G  R E M A R K S  

Theorem 1 asserts that there are no frozen direction fields that are analytic with respect to e. The assumption 
as to analyticity with respect to e may probably be dropped, but this still awaits proof. An even simpler problem 
remains to be solved: it is required to prove that, under the assumptions of Theorem 1, for small values of e ~ 0, 
differential equations (2.1) do not admit of non-constant analytic integrals. Problems of this kind are very difficult. 
Suffice it to recall the result, arising from KAM-theory, that for small e ~ 0 Hamiltonian systems of type (2.1) 
always have a non-constant continuous first integ(.al [14]. On the other hand, there are examples of Hamiltonian 
systems that admit of a C k integral but have no C T M  integrals defined throughout the phase space [7]. 

In many cases, splitting of separatrices [7, 14] may be used to prove that there are no analytic integrals for fixed 
small values of e ~ 0. However, splitting of separatrices does not preclude the existence of non-trivial frozen direction 
fields. Indeed, in the example of Section 2, a system on M 3 has infinitely many hyperbolic periodic trajectories whose 
separatrices intersect transversely. 

Examples have been given [9] of steady flows of viscous fluid with separatrix crossing. The chaotic structure of 
some flows of viscous fluid has been investigated [15]. 
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